
Lecture no. 3, Professor  S.T. Yau , April 10, 2007 
 
Notes and supplementary comments (in [ ]s) by Robert E. Greene 
 
Last time: Real 4-manifolds M4 with almost (many) complex structures but with no 
integrable almost complex structure,  no complex structure. In understanding this 
situation , we observed the importance of the Riemann-Roch –Hirzebruch formula, and of 
the fact that it actually holds in the non-Kähler case(from the Atiyah-Singer Theorem). 
Namely for a compact complex manifold of any dimension and with F the sheaf of germs 
of sections of a holomorphic vector bundle V: 
 
Σ (-1) i  dim Hi (M, F)  =  ( ) ( )ch V Todd M∫
where ch is the Chern character and Todd is the Todd class. 
 
In the case of a compact complex manifold M of complex dimension 2, 
and with V= the trivial line bundle , one gets 
 
the left hand side = the "arithmetic genus" (by definition)    while  
 
the right hand side=  (c1

2
  +   c2) /12 

 
Definition: irregularity of M , symbol q, is dim H1 (M , O)  
(that is, the middle item in the left hand side).  
 
Kodaira proved from the Riemann Roch formula that 
 
2q – b1 =  1 or 0   (in this complex 2-dimensional case), where b1 is the first Betti number 
as usual.  
 
This cannot be 1 in case M is Kähler, since as we shall now recall, b1 is necessarily even 
in the  Kähler case (in all dimensions).[This is of course a generalization of the fact that 
the first Betti number of a compact Riemann surface is always even, namely 2g with g = 
the topological genus of the surface]. 
 
For this, define as usual  the Hodge numbers   hp,q   to be the dimension of the (Cech) 
cohomology group  Hq (M, Ωp ) , where Ωp  is the holomphic vector bundle of forms of 
type (0,q)  [In other words, hp,q is the dimension of the pth sheaf cohomology of the sheaf 
of germs of sections of the sections of the holomorphic vector bundle Ωp. This is by the 
Dolbeault isomorphism given by dbar q-cohomolgy for forms with values in Ωp.] In the 
Kähler case this is given by the dimension of a space of harmonic forms, namely the 
dimension of the space of harmonic forms of type (p,q).   Here as usual type (p,q) means 
that in a holomorphic local coordinate system they have the form  
 

,

JI
I Jf dz d z∧∑   where I and J are index sets of length p and q, respectively. 
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Now the ordinary Laplacian  acting on C∞  m- forms (with complex coefficients)  has a 
(finite dimensional) kernel, which consists of the harmonic forms by definition and has 
dimension = bm .  On any complex manifold , one has projection operators taking 
(pointwise) the space of m-forms to the space of (p,q) forms, 
 ∏ p,q: m-forms→ (p,q) forms. 
 
On a Kähler manifold, these operators commute with the Laplacian. This follows 
essentially from the fact that the J operator and hence the Kähler form is a covariant 
constant(parallel relative to the Riemannian connection) and the Laplacian is essentially 
constructed from the Kähler form in this case.  
 
This gives the famous "Hodge decomposition" 
 
kerΔ on smooth m-forms = . (ker ( , ) )

p q k
on p q forms

+ =
⊗ Δ

So                  . ,p q
mb h=∑

Also  hp,q =  hq,p    since conjugation takes the kernel of the Laplacian on (p,q) forms to 
the kernel on (q,p) forms, the Laplacian being itself a real operator. 
 
In particular,  h1,0 = h0,1   and  b1 = h1,0  + h0,1  so  b1= 2 h1,0   is even , as we sought. 
 
Philosophically , the important point here is that b1 is of course purely topological but this 
purely topological item gives information about the holomorphic items hp,q and thus 
potentially about spaces of holomorphic sections. 
 
Note that, in effect because the Riemann-Roch theorem still works in the non-Kähler 
case, one still gets information about the irregularity from topological information, even 
in the non-Kähler case. 
 
Holomorphic 1-forms on complex surfaces and why they are important: 
 
Suppose M is a compact complex surface, not necessarily Kähler. And suppose that  
ω=Σ fi  dzi is a holomorphic 1-form. Then the 1-from must be closed. 
 
This is surprising at first sight but easy to prove: Since dbar vanishes on the 1-
form(because it is holomorphic), dω  is a (2,0) form and hence can be written 
 
F dz1∧dz2.  

  
Now by Stokes Theorem  0d dω ω∧ =∫  (because  ( )d d dω ω ω∧ = ∧ ω ). 

On the other hand,  
2

d d Fω ω∧ =∫ ∫ .  So F is identically 0 and  ω is closed. 
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With a fixed point z0  chosen in M once and for all, then for each (necessarily closed) 
holomorphic form ω , point z in M, and  path from z0  to z, one can associate the integral 
of ω along the path. This is well-defined up to an integral of the form along a closed path 
in M. So one can associate to each z in M a linear functional on the space of holomorphic 
(closed) (1,0) forms and this is well defined up to the "periods", namely (since the forms 
are closed) the integrals of the forms over  the 1-homology of M with integer coefficients. 
Tracing through this one gets the "Albanese map"  of M into  a torus, namely the dual 
space of the holomorphic (1,0) forms / image H1(M ,Z), where  H1 (M,Z) is mapped into 
the dual space of the  holomorphic (1,0) forms by integration.  This map is holomorphic. 
[Note: The dimension of the dual space of the space of holomorphic (1,0) forms is of 
course the same as the (finite) dimension of the space of holomorphic 1-forms 
themselves, but the passage to the dual is important since otherwise the exact role of the 
periods is obscured.] 
  
The Albanese map's very definition depends on the forms being closed: otherwise the 
integration depends on the path in a way much more complicated than "well defined mod 
periods". Without closed, it is hopeless! 
 
The dimension of the "Albanese torus" is the irregularity q, and the Albanese map is thus 
nontrivial if q>0, And as noted earlier, this is guaranteed by Kodaira's formula even in the 
non-Kähler case, if one assumes that b1 >0. The nontriviality of the Albanese map in turn 
gives one information about the surface, since the image is Kähler and the fibre is a curve 
or a point.  Yau(1976, Topology) used this method to exhibit parallelizable 4-manifolds 
without complex structures. These had b1 equal to 4 and hence if there had been a 
complex structure one would have had the Albanese map going to a 3-torus (at least), but 
this could be observed to be impossible in the particular case. This illustrates the 
importance of the idea of using the purely topological , b1 in this instance, to get 
holomorphic objects. 
 
There are really only two methods so far for exhibiting almost complex manifolds with 
no complex structure. In historical order; 
 
 1 Van de Ven : Chern number restrictions 
 
and 
 
2 the holomorphic 1-form argument of the type just discussed 
 
For method 1, in van de Ven [Proc. Nat. Acad. Sci, 1966, discussed in detail in Compact 
Complex Surfaces, Barth, Peters, Van de Ven, Springer 1984], it was shown that  
for a compact  complex surface [ It is also shown how to find almost complex 
manifolds with c

2
2 18c c≥

1  and c2   having arbitrary values subject only to the condition that 12 
divides     c1

2 + c2.  Of course infinitely many of these violate the inequality shown. Van 
de Ven also provides some other examples using an Albanese torus argument similar in 
spirit to that of method 2, though not giving the trivial tangent bundle case shown by 
Yau.  Kodaira's classification is used here. ] 
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The Van de Ven inequality was improved by Bogomolov to 4 c2     ≥  c1
2   and 

subsequently by Miyoka and indenpendently Yau to     3 c2      ≥  c1
2. This latter is optimal 

as one sees from CP2 with c2 = 3  and c1
2= 9 . [The first is just the Euler characteristic. 

For the second, note that the  first Chern class here is that of the dual of the canonical 
bundle and that the canonical bundle's dual is the third power of the dual of the 
tautological bundle, so that in terms of intersection numbers one is looking for the square 
of this at the intersection of three hyperplanes(complex lines in this case) in CP2 with 
three others in general position for a total of nine intersection points, all of course of 
positive orientation. Note that sign conventions here on the first Chern class are irrelevant 
since the first Chern class is squared.]  

 

Higher dimensions: Unfortunately, all of this is specific to complex dimension 2 and does 
not generalize in any apparent way to higher dimensions. In particular, in the higher 
dimensional Riemann Roch there are at least two "middle terms" and these occur with 
opposite sign. So one does not easily get any inequality that implies (as in the Kodaira 
irregularity formula) the existence of holomorphic objects.  
 
The most natural next stage is of course to look at M6 , a compact manifold of real 
dimension 6 with an almost complex structure. And then one asks as before if there is 
always an integrable one. No example has been found where it can be seen that such an 
M exists with demonstrably no complex structure. So it is natural to conjecture that in 
real dimension 6, the existence of an almost complex structure implies the existence of a 
(complex dimension 3) complex structure.  
 
The famous instance is S6.  But it is probably not a good idea to concentrate on this 
specific instance rather than looking for a general method. Calabi showed that there is 
an almost complex structure coming from G2 on any compact hypersurface in R7. [Calabi, 
Construction and properties of some six-dimensional almost complex manifolds, 
Transactons A.M.S. 87(1958)]. So S6 is rather special already.  Most of the Calabi 
structures are non Kähler and are not themselves integrable but the question remains if 
there is an integrable structure. 
 
Return to our earlier concept: an almost complex structure is a lift of the classifying map 
of M into BSO(6) for the tangent bundle  to BU(3). Then one can hope to deform such a 
lift , which is itself an almost complex structure,  to an integrable almost complex 
structure.  But one suspects that this may not be possible, in the same general way that 
maps of S2 into a given manifold may not be deformable to minimal ones because one 
may encounter the "bubbling" phenomenon. The original S2 shrinks may divide into two 
pieces, if it in some sense goes around two "holes" in the manifold. This was analyzed by 
Sachs-Uhlenbeck. [This has already played a role, e.g., in Siu/Yau on the Frankel 
Conjecture and Micallef-Moore.] 
 
In higher dimensions, one can also have singularities. Similar bubbling phenomena (and 
possibly singularities in high dimensions) are likely to happen in the almost complex 
deforming to complex structure question, e.g., on M6 real dimension 6 almost complex 
manifolds in trying to deform to a 3-complex –dimension complex structure. 
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But one should shift focus to general M, not just the 6-sphere. This is philosophically 
similar to the (three dimensional) Poincare Conjecture, where concentration on the three-
sphere as such was not effective whereas the approach to general geometrization gave the 
key ideas for the sphere problem in particular.  Some similar principle probably applies 
for the S6 problem: the key will probably be a general method. 
 
Complex Surfaces Revisited.  
We now return to complex surface theory to look for some ideas that might be 
generalizable to higher dimensions. In complex diemension 2, we have the famous 
Kodaira classification., which grew out of the work of the Italian algebraic 
geometers(Castelnuovo, Enriques,et. al.)  
 
[The Kodaira/Enriques classification arises as a generalization of the Riemann surface 
situation. One first looks for a way to distinguish the three cases , genus 0, genus 1 , and 
higher genus in terms of algebraic geometric ideas alone. (It is futile to expect the 
constant curvatures corresponding , positive , zero, and negative to work in higher 
dimensions as such!). Consider the canonical bundle K of (1,0) forms. This is a negative 
bundle on CP1 and so all its positive power are also negative, and the space of 
holomorphic sections of Km , m >0, is of dimension 0 for all m>0. On a torus(genus 0),  
K is hololorphically trivial, as are all its (positive) power consequently, and the 
dimension of the space of holomorphic sections of Km is 1 for all m(>0). On a higher 
genus Riemann surface Σ, K is a positive bundle(the degree of the bundle is 2g-2) and 
hence so are its positive powers. And the Riemann Roch Theorem gives that the 
dimension of the space of holomorphic sections H0(M , Km) is  m (2g-2) +1-g + dim 
H0(M , K1-m).   If m>1, then K1-m is a negative bundle and H0  has dimension 0. (Recall 
the 3g -3 dimension for quadratic differentials!)  So  the dimension of the space of 
sections of Km, m>0, grows linearly as a function of m. This suggests that one should 
consider for higher dimensional complex manifolds, the behavior of dim H0(M, Km) for 
positive m large, that is the asymptotic behavior of this dimension. This is the idea that 
underlies the Kodaira/Enriques classification.] 
 
On a complex surface, there is a natural holomorphic line  bundle, the "canonical bundle" 
of forms of type (n,0).  As discussed earlier, the transition functions here are the 
holomorphic Jacobian of coordinate changes, that is the determinant of the nxn matrix 
of partial derivative of wj with respect to zi . Then we can look at the (positive) powers of 
these transition functions, that is the mth powers of this (holomorphic on coordinate 
overlaps) determinant. This gives the holomorphic line bundle Km.  
 
By definition,  dim H0(M , Km) is the mth "pluri-genus"  pm and  the sequence p1,   …. 
are called collectively the "plurigenera". The sequence of plurigenera together form a 
powerful invariant of the complex surface. [The plurigenera are "birational invariants" so 
in particular, they do not change "under blowing up" or down, as opposed to say h1,1. 
Literally, a birational invariant of an algebraic variety  is something that is determined by 
the meromorphic function field and is thus the same for all varities with that function 
field.] 
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We look now for a classification of "minimal models". A minimal model is a surface 
where no (rational) curve that can be blown down(collapsed to a point). Theorem of 
Grauert: If P1     M has self-intersection number -1 then there is an M' with a point p'  
such that M = M' with p blown up and the blow up of p' is the curve P. From this, one 
deduces that by successively blowing down such "exceptional curves" one arrives at a 
situation where no further blowing down is possible, a "minimal model".[Minimal 
models of algebraic surfaces are unique unless the surface is "ruled", A ruled surface is a 
surface that is birational to the product of a P1 and a Riemann surface of genus g at least 
1.] 
 
So in summary for complex surfaces , any surface is obtained from a minimal model(with 
no exceptional curves that can be blown down) via a finite number of successive blow 
ups . 
 
Now we turn to the Kodaira classification: this is a list of possibilities, some with sub-
cases. 
 
(I) All plurigenra are 0. This corresponds to Kodaira dimension = -∞. 
 
[ Kodaira dimension in general is defined as follows: On a compact complex manifold, 
either all but a finite number of the plurigenera are 0 or there is a unique integer k such 
that for some positive numbers A and B,      A mk   ≤  pm ≤    Bmk.  The integer k is called 
the Kodaira dimension of M. It is always no larger than the complex dimension of M. In 
the first case, that all but a finite number of plurigenera are 0 , one says the Kodaira 
dimension is –∞ (or sometimes -1).  The Kodaira dimension is equal to the maximal 
dimension of the mapping of M into complex projective space via sections of a power of 
the canonical bundle, that is, the mapping that becomes an embedding in the proof of the 
Kodaira Embedding Theorem via sections of positive bundles. Thus the Kodaira 
dimension of a manifold of complex dimension n with positive canonical bundle is n, the 
maximum possible value. But in general the Kodaira dimension can be less than n. For 
example, in our Riemann surface motivational case, the Kodaira dimension for :CP1  
 is –∞ (plurigenera all 0); for a genus 0 surface (a torus) , it is  0 (plurigenera are all 
1);and for  a surface of genus bigger than 1, the Kodaira dimension is 1, linear growth of 
plurigenera as already noted.] 
 
This class (I) includes 
1.  "rational surfaces" (birational to CP2)  ,with minimal model CP2 itself.  
2.   the Hirzebruch surfaces (except for the n=1 case), which are P1 bundles over P1.  

and   ruled surfaces, which are P1 bundles over a Riemann surface Σ of genus g greater 
than 1. 
3.    finally there are the mysterious Kodaira VII surfaces, which have not been really 
classified(more on this later; these have b1=1). 
 
II Kodaira dimension =0 
 
Here pm= 1 for some m and pm<2 for all m. 
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Classes of these(continuing the consecutive numbering) 
 
4.   K3 surfaces,  with irregularity =0, p1=1 m and canonical line bundle trivial. All K3s 
are diffeomorphic in the real sense to the quartic surface  4 0jz =∑  in CP3. 
 
5.   Enriques surface which has q=0, but canonical bundle not trivial. This is K3/ Z2 for 
some Z2 action 
 
6.   complex torus(including abelian varieties)[ In complex dimension 2 and higher, 
complex tori, that is quotients of Cn by a lattice of translations , are generically not 
algebraic. This was discovered by Riemann. It is the starting point for the question of 
how to characterize algebraic varieties among Kähler manifolds—the tori are always 
Kähler since they inherit the Euclidean metric—which culminated in the idea of a Hodge 
metric and Kodaira's proof that a Kähler manifold was algebraic if (and only if) it 
admitted a Hodge metric.] 
 
7.   hyperelliptic   surfaces [These are quotients of the product of two elliptic 
curves(Riemann surfaces of genus 0) by finite group actions. There are seven families of 
these corresponding to various possibilities for the group involved.] 
 
8.   Kodaira surfaces: nonalgebraic, but with some nonconstant meromorphic functions. 
Two kinds: (i) b1= 3   and (ii) b1= 1[the first kind have trivial canonical bundle, the 
second kind nontrivial. The second kind are quotients of the first kind by finite groups of 
small order, 2,3,4,or 6. For the first kind, the plurisgenera are all 1 since the canonical 
bundle is tirival. For the second kind, the plurigenra are all 0 except if the index is 
divisible by the order of the group in which cases they are 1.] 
These surfaces (of first type) arise from quotients of C2 by groups of affine 
transformations of determinant 1. There is a global holomorphic 2-form (dz1  dz2 pushes 
down to quotient).  They can also be represented as elliptic fibrations over an elliptic 
curve with constant moduli on the fibre(usually fibre varies). 
 
III Kodaira dimension=1 
 
9.   (proper) elliptic surfaces: these are fibered over a Riemann surface of genus at least 2 
with fibre an elliptic curve with variable moduli (fibre a Riemann surface of genus 0 but 
with possibly varying complex structure)   and possible singular fibres. The singular 
fibres that could occur were classified by Kodaira. [These all have c1

2=0 and c2 
nonnegative.]  
 
IV Kodaira dimension =2  
10.  These are all regarded as one group. [As noted, they  are the analogue of Riemann 
surfaces of genus at least 2. They are all algebraic. Both c1

2 and c2  are positive and their 
sum is divisible by 12.   ] 
 
End of classification 
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Looking at this , one learns a lot of general facts about complex surfaces. First of all, 
being Kähler seems quite close to being algebraic in some sense. Kodaira actually proved 
that every Kähler surface can be deformed into an algebraic surface(Castelnuovo 
conjecture)[ e.g., turn any complex torus into an abelina variety by deforming lattice]. 
Deformation here means a homomorphic family of surfaces. So topologically there is no 
difference between the two.  
 
For a long time this was believed to be true in higher dimensions as well , But Claire 
Voisin showed that this is not the case: in every diemension from 3 on up ,there are 
Kähler manifolds which cannot be deformed to be algebraic. 
 
Second question: Non-Kähler versus Kähler. 
Kähler implies b1 is even as before. For surfaces the converse is true: b1 even implies 
surface is Kähler. The argument that follows depends on the classification, but a direct 
proof without classification is possible. (Buchdahl ;  for next time)  
 
The argument works from the classification. The only cases to worry about are K3 
surfaces and surfaces of Kodaira dimension 1. The rest are either algebraic or are 
quotients of algebraic by a discrete  group. In particular, group 8 are ruled out because of 
Betti numbers 1 or 3.  
 
Elliptic surfaces case was proved by Miyoka(Japanese Acad Proc, 50(1974)) 
 
 
 
Surfaces of type VII (item 3 in the Class I of the previous)  are very interesting non-
Kähler examples. There are two types, one type with b2=0 , the other with b2 postive. 
Inoue proved constructed examples which contain no curves. J. Li, S.T. Yau and F. 
Zheng completed the proof(clarifying an early work of Bogomolov) that a class VII 
surface with no curves and b2=0 was one of Inoue 's examples. Kodaira had already 
classified those of class VII  with b2=0 and at least one curve—these must be either 
elliptic or a Hopf surface. Thus the b2=0 situation is completely understood.  
 
 
 
Later, in 1983, Harvey and Lawson proved the elliptic surface case by another method 
involving geometric measure theory. (Inventiones Math. 74). [ The statement and proof 
of their basic result involves the concept of a current. A current is an element in the dual 
space of forms of a certain degree, in analogy to distributions as the elements of the dual 
space of smooth functions. In particular, a (1,1) current on a complex manifold has the 

local form ij
i i

T
z z
∂ ∂

∧
∂ ∂∑   where the Tij are distributions. A positive current of this type 

is characterized by the T's being measures. The d-operator operates on currents by adjoint 
action, just as derivatives operate on distributions, so dC(form)= (by definition) 
C(d(form)). Thus d lowers "dimension" of currents. Currents split into types, just as 
forms do, on a complex manifold. ]  The main result is a characterization of Kähler 
manifolds. Namely, they prove: 
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A compact complex manifold M is Kähler (that is, admits a Kähler  metric) if and only if 
M admits no positive current of type (1,1) which is  the (1,1) part of a boundary, that is, it 
is  the (1,1) part of  the operator d applied to another current.  
 
The idea of the proof is as follows:  Consider the set of forms of type (1,1) that are 
positive at each point, that is, the associated Hermitian form is positive definite at each 
point of M.  This is a (real) convex (half) cone in the space of (1,1) forms, considered as a 
real vector space.  If one of these forms is closed, then M has a Kähler metric (and 
conversely), namely the positive definite Hermitian form associated is a Kähler metric. If 
none of them is closed, then an argument of Hahn-Banach type shows that there is a 
(closed) hyperplane in the space of forms which contains the kernel of d, but has empty 
intersection with the (half) cone.  Then  ±a linear functional that has its kernel=this 
hyperplane is a current that  violates the hypothesis of the theorem; such a linear 
functional vanishes  on kernel d is thus necessarily in the image of  d  acting on currents, 
that is,  the adjoint of d acting on forms, made an  operator on currents as already defined.   
 
(This type of argument will reappear later when we discuss balanced metrics.) 
 
 
This is in effect a current version of the fact that on a Kähler  manifold, a complex 
submanifold cannot be homologous to 0. [Logic: If N were  the boundary of N' then  
integral over N of the appropriate power of the Kähler  form would be the integral over 
N' of d of that power of the Kähler  form and would hence be 0. But then N has volume 0 
and is thus not a submanifold.] On non-Kähler  manifolds, it can happen that a complex 
submanifold can be homologous to 0. For example in the famous Calabi-Eckmann 
complex structures on the products of odd dimensional spheres, there are complex tori  
that are homologous to 0.  [These come from the fibration of each factor with fibre a 
circle, the fibration being the projection of each odd sphere onto the corresponding 
complex projective space. The complex structure arises from thinking of the tori as 
Riemann surfaces and combining this with the complex structures from the complex 
projective spaces. In this set up, the tori are by definition complex submanifolds but they 
are homologous to 0.]  The Harvey –Lawson characterization takes care of the elliptic 
surface case: namely, that they are Kähler  if and only if they have even b1.  
 
What is left is the situation of K3 surfaces. Here all the surfaces have b1 even . So one 
wants to show that all of them are Kähler . It was shown by Kodaira that they had Kähler  
deformations , even arbitrarily close Kähler  manifolds. Now by Yau's solution of the 0 
case of the Calabi Conjecture, there are Ricci flat Kähler   metrics on each of these 
Kähler  K3s. but the metric depends on a choice of "polarization" (choice of Kähler  
class).  Todorov and Siu showed that one could control the Kähler  class of the 
approximating Kähler  K3s so that there was a limit Kähler  metric on the original K3. 
(More on this later including Hitchin idea of three different complex structures obtained 
from the metric).  
 
 
Thus in all cases, any compact complex surface,  b1  being  even implies there is a Kähler  
metric (both for elliptic surfaces and K3 surfaces, the only cases in question really). 
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Another idea: algebraic dimension (and class VII surfaces) 
  
Consider the field of meromorphic functions(global functions that are locally the quotient 
of two holomorphic functions). On a compact complex manifold this is finitely generated 
as a field over the complex numbers, and it has transcendence degree less than or equal to 
the complex dimension of the manifold(theorem of C.L. Siegel). For complex surfaces, it 
is thus at most 2. This transcendence degree is called the "algebraic dimension". 
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This turns out to be central for considering non-Kähler  complex surfaces, the somewhat 
mysterious class VII surfaces. In particular, if the algebraic dimension of one of these is 
1, then it is an elliptic surface. If the algebraic dimension is 0 and b2 =0 and S contains 
curves ,then it is a Hopf surface(that is surface with universal cover C2 – {(0,0)}), as 
shown by Kodaira.  Thus the remaining cases are 
 
(i) b2=0, no curve  
 
and  
 
(ii) b2>0. 
 
The first of these two cases is illustrated by examples constructed by Inoue(these will be 
described in detail next time). They are quotients of HxC ,where H is the upper half plane 
in the complex numbers C. Inoue proved that any example of the type of the first case 
here was one of his example provided that there is a line bundle L on the surface such 
that there are  non trivial holomorphic sections of the tensor product of the tangent bundle 
of the surface with L. Bogomolov argued that this always happened: such a bundle L 
always exists. Then Inoue's examples are the only examples. Bogomolov's argument is 
complicated and hard to follow. Li,Yau, Zheng (Illinois Journal 34(1990)) gave a shorter 
argument using Hermitian Yang Mills results of Li,Yau(in Mathematical Aspects of 
String Theory ,World Scientic, 1987).  These topics will be treated in more detail next 
time. 
 

Robert E. Greene  
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